Geometric Dimensioning & Tolerancing (GD&T)

Geometric Dimensioning & Tolerancing (GD&T)

- ► GD&T is a system that uses standard symbols to indicate tolerances that are based on the feature's geometry.
- ► This allows a drawing to contain a more defined feature more accurately.

Inspection of Parts - For Example

Assume all 4 legs will be cut to length at the same time.

Given Table Height

- However, all surfaces have a degree of waviness, or smoothness. For example, the surface of a 2 x 4 is much wavier (rough) than the surface of a piece of glass.
 - As the table height is dimensioned, the following table would pass inspection.

Example cont'd.

- ► The table height may pass inspection with any height between 26 and 28 inches.
- ► The table top must be flat within 1/16.

WHY IS GD&T IMPORTANT

- Saves money
 - ► For example, if large number of parts are being made GD&T can reduce or eliminate inspection of some features.
- Ensures design, dimension, and tolerance requirements as they relate to the actual function
- Provides uniformity

TERMINOLOGY REVIEW

- Basic Dimension: Nominal dimension from which tolerances are derived.
- ► Tolerance: the permissible limit or limits of variation in a physical dimension.

Limits, Deviations & Symmetrical Tolerances of Size

► Tolerances of size can be displayed as

Deviations

► If not toleranced, set to a Basic Dimension, used to describe theoretical exact size

Datums and Geometric Controls

- Datum References
 - Or just Datum, is some important part of an object such as a point, line, plane, hole, or surface - that serves as a reference in defining the geometry of the object.
 - Define Datums using Datum Feature Symbols

- Geometric Controls
 - ▶ Describes the conditions and tolerances of a geometric control on a part's feature.
 - ► Geometric Control Frame is used to describe these features

GEOMETRIC CHARACTERISTIC CONTROLS 14 characteristics that may be controlled TYPE OF **TYPE OF CHARACTERISTIC** SYMBOL **TOLERANCE FEATURE FLATNESS** INDIVIDUAL **STRAIGHTNESS** (No Datum **FORM** Reference) CIRCULARITY *b*/ **CYLINDRICITY** INDIVIDUAL LINE PROFILE or RELATED **PROFILE FEATURES** SURFACE PROFILE PERPENDICULARITY _ ORIENTATION ANGULARITY // PARALLELISM RELATED A **FEATURES** CIRCULAR RUNOUT RUNOUT (Datum DA **TOTAL RUNOUT** Reference Required) CONCENTRICITY Ф **POSITION LOCATION SYMMETRY**

Feature Control Frame

FEATURE CONTROL FRAME

Feature Control Frame

Uses feature control frames to indicate tolerance

Reads as: The position of the feature must be within a .5 diametrical tolerance zone relative to datums A, and B.

Datum

- Datum Placements
 - ► Placements of datums are used with datum triangles that touch the feature, with a straight leader line to the datum identifier box

Placement of Datums

Feature sizes, such as holes

Sometimes a feature has a GD&T and is also a datum

Placement of Feature Control Frames

May be attached to a side, end or corner of the symbol box to an extension line.

Placement of Feature Control Frames

Applied to a surface

Placement of Feature Control Frames

May be below or closely adjacent to the dimension or note pertaining to that feature.

Geometric Control Example: Flatness

- Straight forward. References how flat a surface is.
 - ► Flatness as stated on drawing: The flatness of the feature must be within .200 tolerance zone.

- Would Pass Inspection