Career & Technical Education

Chapter 2

Design and Sketching

Chapter 2 – Design and Sketching

ENGINEERING DESIGN PROCESS

Design vs. Engineering

Can we engineer these designs?

Engineering Design Process

Engineering Design Process

The Engineering Design Process is a series of steps that develops a new product or system.

Once you improve your design, repeat the Engineering Design Process again to refine your technology.

Engineering Design Process

Chapter 2 - Design and Sketching

SKETCHING & MULTIVIEW DRAWINGS

Sketching

 Sketching – A rough drawing that shows the main features of an object.

Done freehand, without the aid of drafting equipment except a paper and pencil.

Types of Sketching:

- Thumbnail Sketches
- Multiview Sketches

Thumbnail Sketches

Thumbnails Sketches

Thumbnail sketches are small, quick, sketchy, doodles drawn on just about anything. They do not need to be perfect, they convey an idea.

Multiview Sketches

Multiview Sketches

 Multiple two-dimensional sketches describing a three-dimensional object.

Projection

Perspective projection vs Parallel Projection

Multiview drawings use Parallel Projection

Parallel Projection

Multiview Drawing

Another name for Multiview Drawing is Orthographic Projection

- Involves visualization and implementation
 - Ability to see clearly in the mind's eye an object
 - Process of drawing the object

Multiview Drawing

A system and standard that allows you to make a two-dimensional drawing of a three-dimensional object

Viewing Objects

A box is formed by six mutually perpendicular planes of projection that are located around the object

Viewing Objects

Unfolding the box produces an arrangement of the six views

Viewing Objects

- Each view is placed in a constant location relative to the other views
- Each view must be placed in its correct position
- Views and features must be aligned

Choosing Views

- Most commonly used views
 - Front View
 - Top View
 - Right Side View
- Most descriptive view is typically designated as the Front View

Visualizing the Object Views

Choosing Views

- Complex objects require three views to describe its shape
- Simple objects can be described with two views
 - Ex: Soda Can
- Thin objects can be described with only one view
 - Depth is given in a note
 - Ex: Erasing Shield

Curved Surfaces

Some curved surfaces do not show as curves in all views

Object Dimensions

All objects have 3 dimensions

Height

 Distance from top to bottom

Width

 Distance from side to side

Depth

 Distance from the front to back

Object Dimensions

- Front View
 - Shows width & height
- Top View
 - Shows width & depth
- Side View
 - Shows height & depth

Line Types - Visible

- Edges that can be seen in a given view are *Visible* lines
- Visible lines are thick and dark

Line Types - Hidden

Edges that cannot be seen from a given view are indicated by *Hidden* lines

Line Types – Center

Center lines indicate axes of symmetry

TOP VIEW

Line Types – Center

- Perpendicular lines for circular objects
 - Small dashes cross at the center point of feature
 - One center line drawn to indicate longitudinal axis of cylinder or hole

R. SIDE VTFW

Career & Technical Education

Multiview Drawing

Visualize objects and views

Prism and cylinder

Chapter 2 – Design and Sketching

SURFACES AND PICTORALS

SURFACE IDENTIFICATION

Pictorial Sketches

A Pictorial Sketch is a picture like sketch in which the width, height, and depth of a object are shown in one view.

Pictorial Sketches

- A Pictorial Sketch is a picture like sketch in which the width, height, and depth of a object are shown in one view.
 - An oblique sketch is a type of pictorial sketch in which two of the axes are at right angles (90 degrees) to each other.

Pictorial Sketches

- A Pictorial Sketch is a picture like sketch in which the width, height, and depth of a object are shown in one view.
 - An oblique sketch is a type of pictorial sketch in which two of the axes are at right angles (90 degrees) to each other.
 - An isometric sketch is a type of pictorial sketch that relies on three axes to show width height and depth. However, an isometric sketch, shows the axes spaced equally. (120 degrees)

Pictorial Sketches

A Pictorial Sketch is a picture like sketch in which the width, height, and depth of a object are shown in one view.

Isometric Sketching

CODED PLANS

- Shows height of each "cube" stack.
- Each corner could be a viewpoint of the object.
- Viewpoint means the direction in which an observer is viewing the object.
- Similar to a top view in an Orthographic Projection.

VISUALIZE OBJECT

FOR SKECTHING -

DO NOT SHOW EACH CUBE. SHOW ONLY VISIBLE SURFACES AND EDGES, AS IF CUBES HAVE BEEN COMBINED.

EXAMPLE #1

1

V = Viewpoint

Note location of viewpoint and coded plan noting height of object. Click to start animation.

EXAMPLE #2

2	2	3	
1	1		\/

VIEWPOINT

- Viewpoints can make the object appear differently.
- Example #2 is redrawn with a different viewpoint.

DIFFERENT VIEWPOINT

COMPARISON OF VIEWPOINTS

- Different look
- Optical illusion of height
- Viewpoints can show or exclude details

COMPARE

ORTHOGRAPHIC vs. ISOMETRIC

ISOMETRIC DRAWING

ORTHOGRAPHIC DRAWING

A **normal or principal plane** is parallel to one of the principal planes of projection, and therefore is perpendicular to the line of sight.

- •Frontal plane (plane A)
- •Horizontal plane (plane B)
- •Profile plane (plane C)

Inclined plane (plane D)

Oblique plane (plane E) is oblique to all principal planes of projection. An oblique surface does not appear in its true shape or size, or as a line in any of the principal views: instead, an oblique plane always appears foreshortened in any principal view.

